miR-200 family promotes podocyte differentiation through repression of RSAD2

نویسندگان

  • Zhigui Li
  • Hongqiang Yin
  • Shuang Hao
  • Lifeng Wang
  • Jing Gao
  • Xiaoyue Tan
  • Zhuo Yang
چکیده

Mature podocytes are highly differentiated cells with several characteristic phenotypic features that are involved in the glomerular filtration function. During kidney development, a series of changes of the morphological characteristics and cellular functions may happen in podocytes. The miR-200 family functions in various biological and pathological processes. But the underlying molecular mechanisms of miR-200 family that functions in podocyte differentiation remain poorly understood. Herein is shown that miR-200a, miR-200b and miR-429 are significantly upregulated during the differentiation of podocytes, with highest upregulation of miR-200a. In these cells, restraint of miR-200 family by RNA interference assay revealed a prominent inhibition of cell differentiation. More intriguingly, miR-200 family directly inhibited the radical S-adenosyl methionine domain-containing protein 2 (RASD2) expression. Moreover, further upregulation of RSAD2 combining with restraint of miR-200 family revealed a promotion of podocyte dedifferentiation and proliferation. In addition, the expression of RSAD2 is consistent with that of in vitro podocyte differentiation in prenatal and postnatal mouse kidney, and significantly down-regulated during the kidney development. Together, these findings indicate that miR-200 family may potentially promote podocyte differentiation through repression of RSAD2 expression. Our data also demonstrate a novel role of the antiviral protein RSAD2 as a regulator in cell differentiation.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A reciprocal repression between ZEB1 and members of the miR-200 family promotes EMT and invasion in cancer cells

The embryonic programme 'epithelial-mesenchymal transition' (EMT) is thought to promote malignant tumour progression. The transcriptional repressor zinc-finger E-box binding homeobox 1 (ZEB1) is a crucial inducer of EMT in various human tumours, and was recently shown to promote invasion and metastasis of tumour cells. Here, we report that ZEB1 directly suppresses transcription of microRNA-200 ...

متن کامل

Snail promotes the cell-autonomous generation of Flk1(+) endothelial cells through the repression of the microRNA-200 family.

Expression of the transcription factor Snail is required for normal vasculogenesis in the developing mouse embryo. In addition, tumors expressing Snail have been associated with a more malignant phenotype, with both increased invasive properties and angiogenesis. Although the relationship between Snail and vasculogenesis has been noted, no mechanistic analysis has been elucidated. Here, we show...

متن کامل

Snail and the microRNA-200 Family Act in Opposition to Regulate Epithelial-to-Mesenchymal Transition and Germ Layer Fate Restriction in Differentiating ESCs

The reprogramming of somatic cells to inducible pluripotent stem cells requires a mesenchymal-to-epithelial transition. While differentiating ESCs can undergo the reverse process or epithelial-to-mesenchymal transition (EMT), little is known about the role of EMT in ESC differentiation and fate commitment. Here, we show that Snail homolog 1 (Snail) is expressed during ESC differentiation and is...

متن کامل

miR-22 in tumorigenesis

www.landesbioscience.com Cell Cycle 11 microRNAs (miRNAs), a newly characterized class of regulatory genes, have revolutionized classical biomolecular principles. These small non-coding RNAs, which are around 22 nucleotides long, negatively regulate gene expression through translational repression or targeting mRNAs for degradation. miRNAs function in multiple cellular processes, including prol...

متن کامل

miR-23∼27∼24 clusters control effector T cell differentiation and function

Coordinated repression of gene expression by evolutionarily conserved microRNA (miRNA) clusters and paralogs ensures that miRNAs efficiently exert their biological impact. Combining both loss- and gain-of-function genetic approaches, we show that the miR-23∼27∼24 clusters regulate multiple aspects of T cell biology, particularly helper T (Th) 2 immunity. Low expression of this miRNA family conf...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 6  شماره 

صفحات  -

تاریخ انتشار 2016